skip to main content


Search for: All records

Creators/Authors contains: "Lei, Jialin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this work, a dataset including structural and mechanical properties of refractory multicomponent alloys was developed by fusing computations of phase diagram (CALPHAD) and density functional theory (DFT). The refractory multicomponent alloys, also named refractory complex concentrated alloys (CCAs) which contain 2–5 types of refractory elements were constructed based on Special Quasi-random Structure (SQS). The phase of alloys was predicted using CALPHAD and the mechanical property of alloys with stable and single body-centered cubic (BCC) at high temperature (over 1,500°C) was investigated using DFT-based simulation. As a result, a dataset with 393 refractory alloys and 12 features, including volume, melting temperature, density, energy, elastic constants, mechanical moduli, and hardness, were produced. To test the capability of the dataset on supporting machine learning (ML) study to investigate the property of CCAs, CALPHAD, and DFT calculations were compared with principal components analysis (PCA) technique and rule of mixture (ROM), respectively. It is demonstrated that the CALPHAD and DFT results are more in line with experimental observations for the alloy phase, structural and mechanical properties. Furthermore, the data were utilized to train a verity of ML models to predict the performance of certain CCAs with advanced mechanical properties, highlighting the usefulness of the dataset for ML technique on CCA property prediction. 
    more » « less
  2. In this work, the performance of the carbon doped compositionally complex alloy (CCA) MoNbTaW was studied under ambient and high pressure and high temperature conditions. TaC and NbC carbides were formed when a large concentration of carbon was introduced while synthesizing the MoNbTaW alloy. Both FCC carbides and BCC CCA phases were detected in the sample compound at room temperature, in which the BCC phase was believed to have only refractory elements MoNbTaW while FCC carbide came from TaC and NbC. Carbides in the carbon doped MoNbTaW alloy were very stable since no phase transition was obtained even under 3.1 GPa and 870 °C by employing the resistor-heating diamond anvil cell (DAC) synchrotron X-ray diffraction technique. Via in situ examination, this study confirms the stability of carbides and MoNbTaW in the carbon doped CCA even under high pressure and high temperature. 
    more » « less
  3. Abstract

    The deformation behavior of the three metal dodecaborides (YB12, ZrB12, and Zr0.5Y0.5B12) is investigated using radial X‐ray diffraction under nonhydrostatic compression up to ≈60 GPa with a goal of understanding how bonding and metal composition control hardness. Zr0.5Y0.5B12, which has the highest Vickers hardness (Hv= 45.8 ± 1.3 GPa at 0.49 N load), also shows the highest bulk modulus (K0= 320 ± 5 GPa). The 0.49 N hardness for ZrB12and YB12are both lower and very similar, and both show lower bulk moduli (K0= 276 ± 7 GPa, andK0= 238 ± 6 GPa, respectively). Differential stress is then measured to study the strength and strength anisotropy. Zr0.5Y0.5B12supports the highest differential stress, in agreement with its high hardness, a fact that likely arises from atomic size mismatch between Zr and Y combined with the rigid network of boron cages. The (200) plane for all samples supports the largest differential strain, while the (111) plane supports the smallest, consistent with the theoretically predicted slip system of {111} [  ]. Strain softening is also observed for ZrB12. Finally, the full elastic stiffness tensors for ZrB12and YB12are solved. ZrB12is the most isotropic, but the extent of elastic anisotropy for all dodecaborides studied is relatively low due to the highly symmetric boron cage network.

     
    more » « less